



For more than 40 years, Bedford has built its reputation for service and reliability by helping customers solve their toughest challenges. We're still the same family-owned-and-operated company that began in 1974, and our PROForms® FRP products continue to be made in the USA under controlled quality-assurance conditions. We'll never put our customers at the risk of longer lead times, improper specs, and far-away product support like foreign producers do. When you work with Bedford, you can expect quality products at a fair price without restrictive policies, hidden conditions or hassles.

#### **Special Orders and Requests Welcome**

From different colors and specific tolerances to unusual reinforcement needs and custom FRP structural shapes, our decades of experience meeting specific requirements on custom orders means you'll get exactly what you need. Volume discounts and annual contracts are also available, so contact us for a quote.

#### **Quality and Testing**

Need to know a specific product will perform as you require? We have detailed technical data, application history and over 40 years of experience to help ensure you get the right structural fiberglass and composite grating products for your application. We also have an in-house testing facility to confirm the product performs to your required specs.

#### **Reasons to Choose Bedford**

#### **NATIONWIDE LOGISTICS AND WAREHOUSING**

We have distribution locations across the U.S. to expedite delivery and can stagger shipments to fit your installation schedule.

#### **GUARANTEED READY-TO-SHIP DATES**

When you receive a ready-to-ship date from Bedford, it's guaranteed\*. If we miss the promised ship date, we pay significant penalties back to you. We also offer Express Response options with shorter, guaranteed lead times.

#### **25-YEAR LIMITED WARRANTY**

PROForms® products are warranted against manufacturing defects for an industry-leading 25 years.\*

#### **FABRICATION & ASSEMBLY**

Bedford has a state-of-the-art fabrication facility with CNC machines for faster processing, as well as secondary coating and painting services. Kitted shipments are available to save installation time on site.

#### **DESIGN AND ENGINEERING SERVICES**

Our full-service team can assist with design, engineering, drafting and estimating to maximize the advantages of FRP in your project.

<sup>\*</sup> Terms and conditions apply. Download our complete guarantee and warranty at bedfordreinforced.com. Ship date guarantees available in most areas. Ask Bedford for details.

# THE SMART ALTERNATIVE TO WOOD, STEEL AND ALUMINUM

Fiberglass reinforced polymer (FRP) is one of the strongest, most durable building materials available today. It's nonconductive, dimensionally stable and extremely low maintenance. It offers the strength of steel at a fraction of the weight for efficient transportation and installation. And unlike traditional materials like wood, steel and aluminum, FRP won't rust, corrode, warp, rot, decay or attract insect damage — so it's ideal for harsh environments.

In short, it's a different way to solve your design challenges — one that can reduce costs and improve long-term performance. To maximize these benefits, however, it's best to design with the properties of FRP in mind from the start. Our engineers and fabricators can help, so contact us with your questions.

#### **Features and Benefits**

- **Corrosion resistant.** Won't rot, rust or corrode.
- **Strong yet lightweight.** Helps save on transportation.
- Virtually maintenance-free. Durable and weather-resistant for a longer life cycle.
- Fire-retardant and nonconductive. Helps create a safer environment.
- **Dimensionally stable.** Won't shrink, swell, warp or bow.
- Highly consistent. Strength, appearance and quality are the same from piece to piece.

- **Easy to fabricate and install.** FRP can be cut, drilled and assembled with standard tools.
- Non-leaching. Does not require environmentally hazardous preservatives.
- **Fast turnaround.** Most in-stock orders are shipped within the next business day.
- Backed by a 25-Year Limited Warranty\*
- Made in U.S.A.



**Architectural Solutions** 



#### **APPLICATIONS**

Stair Structures
Walkways
Pedestrian Bridges
Structural Framing
Handrail Systems
Caged and Fixed Ladders
Decking
Boat Docks
Pipe Supports
Cross Bracing
Concrete Embedment
Tank and Hatch Covers
Display Racks

#### **MARKETS**

Agriculture
Cooling Towers
Military
Mining
Oil and Gas
Pedestrian Bridges
Plant and Chemical Processing
Pulp and Paper
Theme and Water Parks
Utilities
Wastewater/Water Treatment





## **FRP vs. Traditional Materials**

Traditional building materials have their place. But for harsh, corrosive environments, FRP is a smart choice. Here's how FRP compares to several traditional options.

|                                            | FRP Composites<br>Pultruded GFRP                                                                                                                                                                                                                                                                 | <b>Steel</b><br>A 709 Grade 50                                                                                                    | <b>Aluminum</b><br>6061-T651 & 6061-T6                                                                                             | <b>Wood</b><br>Douglas Fir                                                                                                                             |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| CORROSION,<br>ROT AND INSECT<br>RESISTANCE | Resists a broad range of chemicals and is unaffected by moisture or immersion in water. Resists insect damage. Painting is only suggested when exposed to UV rays/direct sunlight.                                                                                                               | Subject to oxidation and corrosion. Requires painting or galvanizing for many applications.                                       | Can cause galvanic corrosion. (Anodizing and other coatings increase corrosion resistance.)                                        | Can warp, rot and decay when exposed to moisture, water and chemicals. Susceptible to attack by insects such as termites and marine borers.            |
| STRENGTH                                   | Has greater flexural strength than timber and pound-for-pound is often stronger than steel and aluminum in the lengthwise direction.  Ultimate flexural strength (Fu): LW = 30,000 psi (30 ksi) CW = 10,000 psi (10 ksi) Compression strength: LW = 30,000 psi (30 ksi) CW = 15,000 psi (10 ksi) | Homogeneous material.<br>Yield strength (Fy)<br>= 36 ksi                                                                          | Homogeneous material.<br>Flexural strength (Fu)<br>= 35 ksi                                                                        | Modulus of rupture<br>is 12,000 psi                                                                                                                    |
| WEIGHT                                     | Weighs 75% less than steel and 30% less than aluminum.                                                                                                                                                                                                                                           | Could require lifting equipment to move and place.  1/2-in. thick plate = 20.4 lbs/sq ft                                          | Lightweight — about a third of the weight of copper or steel.                                                                      | Specific gravity<br>0.48                                                                                                                               |
| ELECTRICAL CONDUCTIVITY                    | Nonconductive. High dielectric capability.                                                                                                                                                                                                                                                       | Conducts electricity.<br>Grounding potential.                                                                                     | Conducts electricity.<br>Grounding potential.                                                                                      | Can be conductive when wet.                                                                                                                            |
| THERMAL<br>PROPERTIES                      | Good insulator with low thermal conductivity.  Thermal conductivity  = 4 (BTU in. /(hr ft² °F)  Low thermal coefficient of expansion.  = 7 - 8 (in./in./°F) 10-6                                                                                                                                 | Conducts heat.  Thermal conductivity  = 260-460 (BTU/sf/ hr/°F/in.)  Thermal coefficient of expansion.  = 6 - 8 (in./in./°F) 10-6 | Conducts heat.  Thermal conductivity = 150 (BTU/sf/hr/°F/in.) Thermal coefficient of expansion. = 13 (in./in./°F) 10 <sup>-6</sup> | Low thermal conductivity.  Thermal conductivity  = .8 (BTU/sf/hr/°F/in.)  Thermal coefficient of expansion.  = 1.7 - 2.5 (in./in./°F) 10 <sup>-6</sup> |
| STIFFNESS                                  | Up to 3.3 times as rigid as timber. Will not permanently deform under working load.  Modulus of elasticity: 2.8 x 10 <sup>6</sup> psi                                                                                                                                                            | Modulus of elasticity:<br>29 x 10 <sup>6</sup> psi                                                                                | Modulus of elasticity:<br>10 x 10 <sup>6</sup> psi                                                                                 | Modulus of elasticity:<br>up to 1.6-1.8 x 10 <sup>6</sup> psi*                                                                                         |

|                         | FRP Composites<br>Pultruded GFRP                                                                                                                                                              | <b>Steel</b><br>A 709 Grade 50                                                                                | <b>Aluminum</b><br>6061-T651 & 6061-T6                                                                                  | <b>Wood</b><br>Douglas Fir                                                                                                                       |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| IMPACT<br>RESISTANCE    | Will not permanently deform under impact. Glass mat in pultruded parts distributes impact load to prevent surface damage, even in subzero temperatures.  Can permanently deform under impact. |                                                                                                               | Easily deforms under impact.                                                                                            | Can permanently deform or break under impact.                                                                                                    |
| ENVIRONMENTAL<br>IMPACT | Not hazardous to the environment.                                                                                                                                                             | Not hazardous.                                                                                                | Not hazardous.                                                                                                          | May be treated with hazardous preservatives or coatings to increase corrosion/rot/insect resistance. Contributes to depletion of forest systems. |
| COLOR                   | Color is molded through; no painting required. Variety of colors available.                                                                                                                   | Must be painted for color, and may require repainting over time.                                              | Colors require prefinishes, anodic coatings and paints. Mechanical, chemical and electroplated finishes can be applied. | Must be primed and painted for color, and may require repainting over time.                                                                      |
| COST                    | Lower installation costs, less<br>maintenance and longer product life<br>allow for a lower lifecycle cost.                                                                                    | nce and longer product life Lower initial material cost.                                                      | Part price comparable<br>to FRP.                                                                                        | Has a lower initial cost,<br>but usually requires more<br>maintenance and replacement.                                                           |
| EMI/RFI<br>TRANSPARENCY | Transparent to radio waves and EMI/<br>RFI transmissions. Used for radar and<br>antennae enclosures and supports.                                                                             | Can interfere with EMI/RFI transmissions.                                                                     | Highly reflective to EMI/RFI transmissions.                                                                             | Transparent.                                                                                                                                     |
| FABRICATION             | Can be field-fabricated using simple carpenter's tools with carbon or diamond tip blades — no torches or welding required. Light weight allows easier transport and installation.             | Often requires welding and cutting torches. Heavier material requires special equipment to erect and install. | Good machinability<br>(welding, brazing, soldering or<br>mechanical joining).                                           | Can be field-fabricated<br>using simple<br>carpenter's tools.                                                                                    |

<sup>\*12%</sup> moisture content

### **Compare the Numbers ...**

| Properties                                               | FRP Composites Steel Pultruded GFRP A 709 Grade |             | Steel<br>A 709 Grade 50 | Aluminum<br>6061-7651 & 6061-76 | <b>Wood</b><br>Douglas Fir |
|----------------------------------------------------------|-------------------------------------------------|-------------|-------------------------|---------------------------------|----------------------------|
| Density (lb/ft³)                                         | 107-                                            | -120        | 490                     | 169                             | 30                         |
| Tensile Strength (psi)                                   | 30,000 (LW)                                     | 7,000 (CW)  | 65,000                  | 45,000                          | _                          |
| Tensile Modulus (x 10 <sup>6</sup> psi)                  | 2.8 (LW)                                        | 1 (CW)      | 30                      | 10                              | _                          |
| Flexural Strength (psi)                                  | 30,000 (LW)                                     | 10,000 (CW) | 65,000                  | 45,000                          | 12,000                     |
| Flexural Modulus (x 10 <sup>6</sup> psi)                 | 1.8 (LW)                                        | 0.8 (CW)    | 30                      | 10                              | 1.6 - 1.8                  |
| Thermal Conductivity (BTU in. /(hr ft² °F))              | 4                                               | 1           | 323                     | 1,160                           | 0.8                        |
| Thermal Expansion (x 10 <sup>-6</sup> in./in./°F) 7 to 8 |                                                 | 6 to 8      | 13                      | 1.7 to 2.5                      |                            |

LW = Lengthwise / CW = Crosswise

References:
1. Datasheets from www.matweb.com

<sup>2.</sup> Wood Handbook: Wood as an Engineering Material

## **PROForms®** Availability



#### **ANGLE**

| SIZE IN INCHES                                         | LBS./LIN. FI |
|--------------------------------------------------------|--------------|
| 1 x 1 x 1/8                                            | 0.19         |
| $1\frac{1}{2} \times 1\frac{1}{2} \times \frac{3}{16}$ | 0.46         |
| 1½ x 1½ x ½                                            | 0.54         |
| 2 x 2 x 1/ <sub>4</sub>                                | 0.75         |
| 3 x 3 x 1/4                                            | 1.16         |
| 3 x 3 x ¾                                              | 1.62         |
| 4 x 4 x ½                                              | 1.50         |
| 4 x 4 x 3%                                             | 2.21         |
| 4 x 4 x ½                                              | 2.92         |
| 6 x 6 x %                                              | 3.35         |
| 6 x 6 x ½                                              | 4.55         |
|                                                        |              |



#### **CHANNEL**

| SIZE IN INCHES                                                    | LBS./LIN. FT. |
|-------------------------------------------------------------------|---------------|
| 2 x <sup>9</sup> / <sub>16</sub> x <sup>1</sup> / <sub>8</sub>    | 0.28          |
| 3 x 1/8 x 1/4                                                     | 0.80          |
| 3 x 1 x 1/4                                                       | 0.85          |
| $3 \times 1\frac{1}{2} \times \frac{3}{16}$                       | 0.81          |
| 3 x 1½ x ¼                                                        | 1.03          |
| $3\frac{1}{2} \times 1\frac{1}{2} \times \frac{3}{16}$            | 0.90          |
| 3½ x 1½ x ¼                                                       | 1.17          |
| 4 x 11/8 x 1/4                                                    | 1.14          |
| 4 x 13/8 x 3/16                                                   | 0.93          |
| 5 x 1 <sup>3</sup> / <sub>8</sub> x <sup>1</sup> / <sub>4</sub>   | 1.37          |
| 5½ x 1½ x ½                                                       | 1.55          |
| 6 x 15/8 x 1/4                                                    | 1.69          |
| 6 x 1 <sup>11</sup> / <sub>16</sub> x <sup>3</sup> / <sub>8</sub> | 2.41          |
| 8 x 2 <sup>3</sup> / <sub>16</sub> x <sup>1</sup> / <sub>4</sub>  | 2.31          |
| 8 x 2 <sup>3</sup> / <sub>16</sub> x <sup>3</sup> / <sub>8</sub>  | 3.24          |
| 10 x 2¾ x ½                                                       | 5.41          |
| 11½ x 2¾ x ½                                                      | 6.24          |
| 12 x 3 x ½                                                        | 6.44          |
| 14 x 3½ x ¾                                                       | 10.97         |
| 18 x 2½ x ¾                                                       | 6.50          |



#### **SQUARE TUBE**

| SIZE IN INCHES                                        | LBS./LIN. FT. |
|-------------------------------------------------------|---------------|
| 1 x 1 x 1/8                                           | 0.34          |
| 11/4 x 11/4 x 1/8                                     | 0.39          |
| 11/4 x 11/4 x 1/4                                     | 0.74          |
| 1½ x 1½ x ½                                           | 0.53          |
| 1½ x 1½ x ¼                                           | 0.97          |
| 1¾ x 1¾ x ½                                           | 0.58          |
| 1¾ x 1¾ x ¼                                           | 1.09          |
| 2 x 2 x 1/8                                           | 0.71          |
| 2 x 2 x 1/ <sub>4</sub>                               | 1.35          |
| 21/4 x 21/4 x 1/8                                     | 0.86          |
| 2½ x 2½ x ½                                           | 1.67          |
| $2\frac{1}{2}$ x $2\frac{1}{2}$ x $\frac{1}{4}$       | 1.76          |
| 3 x 3 x ½                                             | 1.09          |
| 3 x 3 x 1/ <sub>4</sub>                               | 2.11          |
| 3 x 3 x 3/8                                           | 2.99          |
| $3\frac{1}{2} \times 3\frac{1}{2} \times \frac{1}{4}$ | 2.60          |
| $3\frac{1}{2} \times 3\frac{1}{2} \times \frac{3}{8}$ | 3.80          |
| 4 x 4 x 1/ <sub>4</sub>                               | 2.96          |
| 4 x 4 x 3/8                                           | 4.32          |
| 6 x 6 x ½                                             | 4.35          |
| 6 v 6 v 3/-                                           | 6.54          |



#### **FLAT SHEET**

| . Da Giller                                                  |               |
|--------------------------------------------------------------|---------------|
| SIZE IN INCHES                                               | LBS./LIN. FT. |
| <sup>3</sup> / <sub>16</sub> x 2 <sup>1</sup> / <sub>2</sub> | 0.37          |
| ⅓ x 3                                                        | 0.57          |
| 3/8 x 3                                                      | 0.93          |
| ½ x 3                                                        | 1.03          |
| ⅓ x 4                                                        | 0.39          |
| ½ x 4                                                        | 0.76          |
| 3/8 x 4                                                      | 1.15          |
| ½ x 4                                                        | 1.53          |
| ⅓ x 6                                                        | 1.24          |
| ½ x 6                                                        | 2.25          |
| ½ x 9                                                        | 1.86          |
| ½ x 10                                                       | 1.90          |
| ½ x 11                                                       | 2.26          |
| ½ x 12                                                       | 2.46          |
| ½ x 24                                                       | 4.87          |
| ½ x 36                                                       | 7.49          |
| SIZE IN INCHES                                               | LBS./SQ. FT.  |
| 1/8 x 48                                                     | 1.30          |
| ³⁄₁6 x 48                                                    | 1.88          |





| SIZE IN INCHES                      | LBS./LIN. FT. |
|-------------------------------------|---------------|
| 1 x .100                            | 0.25          |
| 1 x 1/8                             | 0.28          |
| 1½ x ½                              | 0.38          |
| 1½ x ¼                              | 0.79          |
| 1¾ x 1/8                            | 0.53          |
| 1¾ x ¼                              | 0.97          |
| 2 x 1/8                             | 0.57          |
| 2 x 1/4                             | 1.03          |
| 3 x .100                            | 0.70          |
| 3 x 1/4                             | 1.72          |
| 3 x ½                               | 3.13          |
| 4.89 x 1/8                          | 1.81          |
| 4.89 x <sup>3</sup> / <sub>16</sub> | 2.13          |



#### **I-BEAM**

| SIZE IN INCHES                                                 | LBS./LIN. FT. |
|----------------------------------------------------------------|---------------|
| 3½ x 1½ x ¾6                                                   | 0.97          |
| 4 x 2 x 1/4                                                    | 1.56          |
| 5½ x 2½ x ¼                                                    | 1.58          |
| 6 x 3 x ½                                                      | 2.34          |
| 6 x 3 x 3/8                                                    | 3.65          |
| 8 x 4 x 3/ <sub>8</sub>                                        | 4.42          |
| 8 x 4 x ½                                                      | 5.70          |
| 10 x 5 x ½                                                     | 7.39          |
| 12 x 6 x ½                                                     | 8.91          |
| $18 \times \frac{3}{8} \times 4\frac{1}{2} \times \frac{1}{2}$ | 8.51          |
| 24 x 3/8 x 71/2 x 3/4                                          | 15.49         |
|                                                                |               |



#### **WIDE FLANGE (WF) BEAM**

| SIZE IN INCHES          | LBS./LIN. FT. |
|-------------------------|---------------|
| 4 x 4 x ½               | 2.33          |
| 6 x 6 x ½               | 3.49          |
| 6 x 6 x 3/8             | 5.29          |
| 8 x 8 x 3/ <sub>8</sub> | 6.92          |
| 8 x 8 x ½               | 8.85          |
| 10 x 10 x ½             | 11.08         |
| 12 x 12 x ½             | 13.43         |



2.49

3.51

5.86

6.72

8.65

#### **ROUND ROD**

½ x 48

3/<sub>8</sub> x 48

½ x 48 % x 48

3/4 x 48

1 x 48

| SIZE IN INCHES | LBS./LIN. FT. |
|----------------|---------------|
| 1/8            | 0.01          |
| 3/16           | 0.02          |
| 1/4            | 0.04          |
| 5/16           | 0.07          |
| 3/8            | 0.10          |
| 1/2            | 0.16          |
| 5/8            | 0.27          |
| 3/4            | 0.38          |
| 7/8            | 0.52          |
| 1              | 0.68          |
| 11/4           | 1.07          |
| 1½             | 1.53          |
| 2              | 2.56          |

### **CHECK WEBSITE FOR AVAILABILE INVENTORY** Most in-stock orders are shipped within the next business day.



#### **SLUDGE FLIGHTS**

| SIZE IN INCHES                                                | LBS./LIN. FT. |
|---------------------------------------------------------------|---------------|
| 3 x 6 x 1/8 x 3/16 (Channel)                                  | 1.37          |
| $3 \times 8 \times \frac{1}{8} \times \frac{3}{16}$ (Channel) | 1.50          |
| 6 x 1/8 x 3 x 1/4 (Angle)                                     | 1.28          |
| 8 x 1/8 x 3 x 1/4 (Angle)                                     | 1.66          |



#### **EMBEDMENT ANGLE**

| SIZE IN INCHES                                        | LBS./LIN. FT. |
|-------------------------------------------------------|---------------|
| 1 x 1½ x ¼                                            | 0.95          |
| $1\frac{1}{2} \times 1\frac{1}{2} \times \frac{1}{4}$ | 1.06          |
| 2 x 1½ x ¼                                            | 1.15          |



#### **DECK BOARD**

| SIZE IN INCHES                                           | LBS./LIN. FT. |
|----------------------------------------------------------|---------------|
| 12 x 21/8 x 3/16                                         | 2.97          |
| $24 \text{ x } 1\frac{1}{8} \text{ x various thickness}$ | 4.61          |
| 24 x 1 <sup>1</sup> / <sub>2</sub> x .175                | 5.96          |



#### **BUILDING PANEL - 12"/24"**

| SIZE IN INCHES                                                      | LBS./LIN. FT. |
|---------------------------------------------------------------------|---------------|
| 12 x 1 <sup>25</sup> / <sub>32</sub> x <sup>3</sup> / <sub>32</sub> | 2.67          |
| 24 x 2½ x ¼                                                         | 13.31         |



#### **DOOR FRAME**

| SIZE IN INCHES            | LBS./LIN. FT. |
|---------------------------|---------------|
| 5¾ x 2¾ x ¾ <sub>16</sub> | 1.68          |



#### **BOX BEAM - 16"**

| SIZE IN INCHES | LBS./LIN. FT. |
|----------------|---------------|
| 16 x 4 x 3/8   | 11.41         |
| 16 x 4 x ½     | 9.00          |



#### **THRESHOLD**

| SIZE IN INCHES | LBS./LIN. FT. |
|----------------|---------------|
| 5½ x ¼         | 1.07          |



#### **SQUARE BAR**

| SIZE IN INCHES | LBS./LIN. FT. |
|----------------|---------------|
| 1 x 1          | 0.81          |
| 11/4 x 11/4    | 1.13          |
| 1½ x 1½        | 1.87          |
| 2 x 2          | 3.32          |



#### **CORNER COLUMN**

| SIZE IN INCHES | LBS./LIN. FT. |
|----------------|---------------|
| 7¾ x 7¾ x ¾    | 8.81          |



#### **CENTER COLUMN**

| SIZE IN INCHES | LBS./LIN. FT. |       |
|----------------|---------------|-------|
|                | 7¾ x 10¾ x ¾  | 10.68 |



#### **LADDER RUNG**

| SIZE IN INCHES | LBS./LIN. FT. |
|----------------|---------------|
| 1¼ x .160      | 0.50          |



#### HANDRAIL CONNECTORS

| SIZE IN INCHES                                 | LBS./PIECE |
|------------------------------------------------|------------|
| 41/4 x 11/4 Fixed                              | 0.87       |
| 4½ x 1½ Fixed                                  | 1.32       |
| 4½ x 1¼ Adjustable                             | 0.87       |
| A <sup>1</sup> / <sub>2</sub> v 1 ½ Adjustable | 1 32       |



#### **THREADED ROD & HEX NUTS**

| SIZE IN INCHES              | LBS./LIN. FT. |
|-----------------------------|---------------|
| Rod - 3/8-16 UNC            | 0.10          |
| $Rod - \frac{1}{2}$ -13 UNC | 0.15          |
| Rod − %-11 UNC              | 0.24          |
| $Rod - \frac{3}{4}-10$ UNC  | 0.34          |
| Rod – 1-8 UNC               | 0.52          |
| Hex Nut − ¾-16 UNC          | 0.02          |
| Hex Nut − ½-13 UNC          | 0.02          |
| Hex Nut - %-11 UNC          | 0.04          |
| Hex Nut − ¾-10 UNC          | 0.07          |
| Hex Nut - 1-8 UNC           | 0.13          |

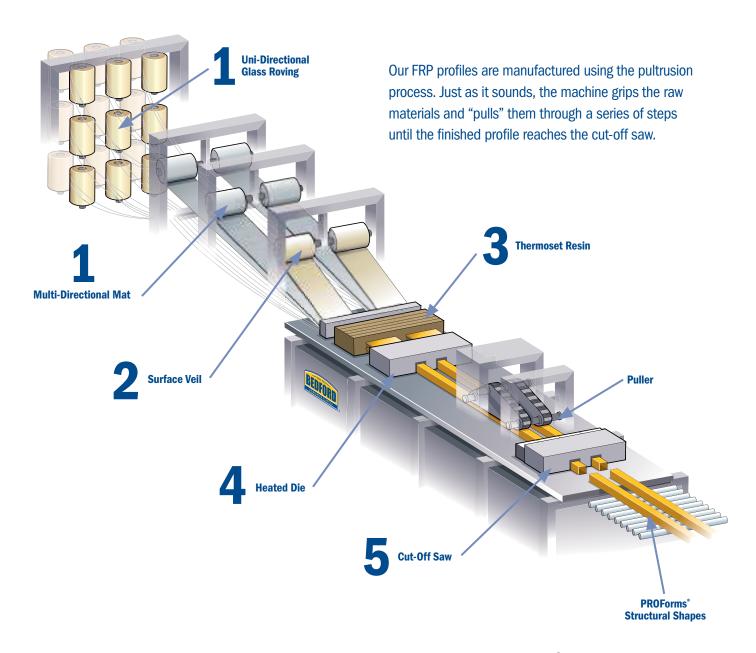


#### **TOE PLATE**

| SIZE IN INCHES | LBS./LIN. F |
|----------------|-------------|
| 4 x 5% x 1%    | 0.49        |



#### **RECTANGULAR TUBE**


| SIZE IN INCHES                                                           | LBS./LIN. FT |
|--------------------------------------------------------------------------|--------------|
| 4 x ½ x 1 x ½                                                            | 1.49         |
| $4 \times \frac{1}{8} \times 2 \times \frac{1}{4}$                       | 1.49         |
| 4 x ½ x 2 x ½                                                            | 1.58         |
| $5\frac{1}{2} \times \frac{1}{4} \times 3\frac{1}{2} \times \frac{1}{4}$ | 3.09         |
| 6 x ½ x 4 x ½                                                            | 3.77         |
| $6\frac{1}{2}$ x $\frac{1}{4}$ x 2 x $\frac{1}{2}$                       | 3.56         |



#### **FLAT STRIP**

| SIZE IN INCHES | LBS./LIN. FT. |
|----------------|---------------|
| 1 x 1/8        | 0.11          |
| 11/4 x 3/16    | 0.19          |
| 1¾ x ¼         | 0.39          |
| 2 x ½          | 0.85          |

## **The Pultrusion Process: Step by Step**



#### FRP is also known as "composites," and is a combination of:

**REINFORCEMENTS** such as fiberglass roving and mat;

**RESIN** such as polyester or vinylester;

ADDITIVES such as pigments, UV inhibitors, fire retardant, etc.; and

SURFACE VEIL which enhances corrosion resistance, UV protection and appearance



Reinforcement The process typically starts by pulling in two forms of fiberglass reinforcement. Creels of fiberglass roving provide unidirectional strength along the length of the profile, and rolls of woven fiberglass mat provide multidirectional reinforcement. All reinforcements are fed through pre-forming guides that will begin to shape the raw glass fibers into the finished profile.



**Surface Veil** Surface veil can be added to enhance the surface appearance and provide corrosion resistance and UV protection of the final product.



Wet-Out The fiberglass reinforcements are pulled through a bath of thermoset resin - typically polyester or vinylester — as well as pigments to add color, filler to enhance properties, and a catalyst to aid in curing. Resin also provides an additional form of reinforcement.



**Curing** Wet-out reinforcements are pulled through the heated pultrusion die, which begins the thermosetting process that causes the resin to "cure" or harden. By the time the part exits the die, a solid, rigid profile in the exact shape of the die cavity has been formed with all the reinforcements laminated inside.



**Cutting** The finished product is then pulled to the cut-off saw and cut to the desired length. After cutting, it is placed in stock at one of our warehouses, sent to our state-of-the-art fabrication center for secondary processing, or crated for shipment to the customer.

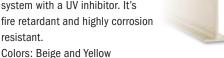
#### **Standard Resin Systems**

PROForms® products are offered in three resin series to meet the requirements of different applications and environments.

#### STD — STANDARD NON FIRE **RETARDANT POLYESTER**

A general-purpose isophthalic polyester resin system with a UV inhibitor, offering good corrosion resistance. Color: Olive Green




#### FR - FIRE RETARDANT **POLYESTER**

A general-purpose fire-retardant isophthalic resin system with a UV inhibitor, offering good corrosion resistance. Colors: Dark Gray and Yellow



#### **VE — VINYLESTER FIRE** RETARDANT

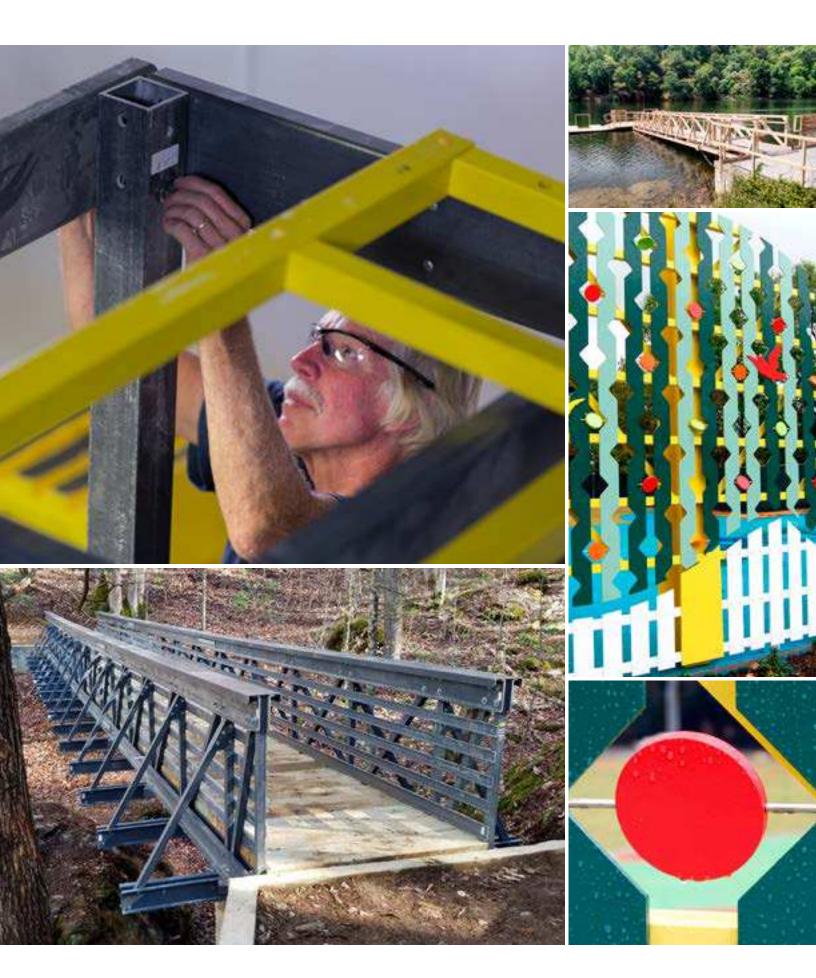
A premium vinylester resin system with a UV inhibitor. It's fire retardant and highly corrosion resistant.





## **Typical Coupon Properties**

The following table shows test results for typical coupon properties of PROForms® structural fiberglass profiles (Standard, Fire Retardant and Vinylester shapes). Properties are derived per the ASTM test method shown. Synthetic surfacing veil and ultraviolet inhibitors are standard.


|                                          | ASTM Test    |                     | Polyester | Vinylester | Rod & Bar | Polyester Flat Sheet |              | Vinylester Flat Sheet |        |              |           |
|------------------------------------------|--------------|---------------------|-----------|------------|-----------|----------------------|--------------|-----------------------|--------|--------------|-----------|
|                                          | Method       | Units               | PROForms  | PROForms   | PROForms  | 1/8"                 | 3/16" - 1/4" | 3/8" - 1"             | 1/8"   | 3/16" - 1/4" | 3/8" - 1" |
| MECHANICAL PROPERTIES (minimum ultimate) |              |                     |           |            |           |                      |              |                       |        |              |           |
| Tensile Stress, LW                       | D-638        | psi                 | 30,000    | 30,000     | 100,000   | 20,000               | 20,000       | 20,000                | 20,000 | 20,000       | 20,000    |
| Telisile Stress, LW                      | D-036        | N/mm <sup>2</sup>   | 206.8     | 206.8      | 689       | 137.9                | 137.9        | 137.9                 | 137.9  | 137.9        | 137.9     |
| Tensile Stress, CW                       | D-638        | psi                 | 7,000     | 7,000      |           | 7,500                | 10,000       | 10,000                | 7,500  | 10,000       | 10,000    |
|                                          | D 000        | N/mm <sup>2</sup>   | 48.2      | 48.2       |           | 51.7                 | 68.9         | 68.9                  | 51.7   | 68.9         | 68.9      |
| Tensile Modulus, LW                      | D-638        | 10 <sup>6</sup> psi | 2.5       | 2.6        | 6.0       | 1.8                  | 1.8          | 1.8                   | 1.8    | 1.8          | 1.8       |
|                                          | 2 000        | KN/mm <sup>2</sup>  | 17.2      | 17.9       | 41.3      | 12.4                 | 12.4         | 12.4                  | 12.4   | 12.4         | 12.4      |
| Tensile Modulus, CW                      | D-638        | 10 <sup>6</sup> psi | 0.8       | 0.8        |           | 0.7                  | 0.9          | 1.4                   | 1.0    | 1.0          | 1.4       |
|                                          |              | KN/mm <sup>2</sup>  | 5.5       | 5.5        |           | 4.8                  | 6.2          | 9.6                   | 6.9    | 6.9          | 9.6       |
| Compressive Stress, LW                   | D-6641       | psi                 | 30,000    | 30,000     | 60,000    | 24,000               | 24,000       | 24,000                | 24,000 | 24,000       | 24,000    |
|                                          |              | N/mm <sup>2</sup>   | 206.8     | 206.8      | 413.6     | 165.4                | 165.4        | 165.4                 | 165.4  | 165.4        | 165.4     |
| Compressive Stress, CW                   | D-6641       | psi                 | 15,000    | 16,000     |           | 15,500               | 16,500       | 20,000                | 16,500 | 17,500       | 20,000    |
|                                          |              | N/mm <sup>2</sup>   | 103.4     | 110.3      |           | 106.8                | 113.7        | 137.9                 | 113.79 | 120.6        | 137.9     |
| Compressive Modulus, LW                  | D-6641       | 10 <sup>6</sup> psi | 2.5       | 2.6        |           | 1.8                  | 1.8          | 1.8                   | 1.8    | 1.8          | 1.8       |
|                                          |              | KN/mm <sup>2</sup>  | 17.2      | 17.9       |           | 12.4                 | 12.4         | 12.4                  | 12.4   | 12.4         | 12.4      |
| Compressive Modulus, CW                  | D-6641       | 10 <sup>6</sup> psi | 1.0       | 1.0        |           | 1.0                  | 1.0          | 1.0                   | 1.0    | 1.0          | 1.0       |
|                                          | 5 00 12      | KN/mm <sup>2</sup>  | 6.9       | 6.9        |           | 6.9                  | 6.9          | 6.9                   | 6.9    | 6.9          | 6.9       |
| Flexural Stress, LW                      | D-790        | psi                 | 30,000    | 30,000     | 100,000   | 35,000               | 35,000       | 30,000                | 35,000 | 35,000       | 30,000    |
|                                          | D 100        | N/mm <sup>2</sup>   | 206.8     | 206.8      | 689       | 241.3                | 241.3        | 206.8                 | 241.3  | 241.3        | 206.8     |
| Flexural Stress, CW                      | D-790        | psi                 | 10,000    | 10,000     |           | 13,000               | 15,000       | 18,000                | 13,000 | 15,000       | 18,000    |
|                                          | D 100        | N/mm <sup>2</sup>   | 68.9      | 68.9       |           | 89.6                 | 103.4        | 124.1                 | 89.6   | 103.4        | 124.1     |
| Flexural Modulus, LW                     | D-790        | 10 <sup>6</sup> psi | 1.8       | 2.2        | 6.0       | 1.8                  | 2.0          | 2.0                   | 1.8    | 2.0          | 2.0       |
|                                          | 5 100        | KN/mm <sup>2</sup>  | 11.0      | 11.0       | 41.9      | 12.4                 | 13.8         | 13.8                  | 12.4   | 13.8         | 13.8      |
| Flexural Modulus, CW                     | D-790        | 10 <sup>6</sup> psi | 0.8       | 0.8        |           | 0.9                  | 1.1          | 1.4                   | 1.0    | 1.1          | 1.4       |
|                                          | 2.00         | KN/mm <sup>2</sup>  | 5.5       | 5.5        |           | 6.2                  | 7.6          | 9.6                   | 6.2    | 7.6          | 9.6       |
| Modulus of Elasticity, E                 | Full Section | 10 <sup>6</sup> psi | 2.6       | 2.8        |           |                      |              |                       |        |              |           |
|                                          |              | KN/mm <sup>2</sup>  | 17.9      | 19.3       |           |                      |              |                       |        |              |           |
| Modulus of Elasticity, E                 | Full Section | 10 <sup>6</sup> psi | 2.5       | 2.5        |           |                      |              |                       |        |              |           |
| ( W & I Shapes > 4")                     | 1            | KN/mm <sup>2</sup>  | 17.2      | 17.2       |           |                      |              |                       |        |              |           |
| Shear Modulus, LW                        | D-5379       | 10 <sup>6</sup> psi | 0.425     | 0.425      |           |                      |              |                       |        |              |           |
|                                          |              | KN/mm <sup>2</sup>  | 2.9       | 2.9        |           |                      |              |                       |        |              |           |
| Short Beam Shear, LW                     | D-2344       | psi                 | 4,500     | 4,500      | 8,000     |                      |              |                       |        |              |           |
|                                          |              | N/mm <sup>2</sup>   | 31.0      | 31.0       | 55.2      |                      |              |                       |        |              |           |
| Bearing Stress, LW & CW                  | D-953        | psi                 | 30,000    | 30,000     |           | 32,000               | 32,000       | 32,000                | 32,000 | 32,000       | 32,000    |
|                                          |              | N/mm <sup>2</sup>   | 206.8     | 206.8      |           | 220.6                | 220.6        | 220.6                 | 220.6  | 220.6        | 220.6     |
| Poisson's Ratio, LW                      | D-3039       | in./in.             | 0.33      | 0.33       |           | 0.31                 | 0.31         | 0.31                  | 0.31   | 0.31         | 0.31      |
|                                          |              | mm/mm               | 0.33      | 0.33       |           | 0.31                 | 0.31         | 0.31                  | 0.31   | 0.31         | 0.31      |
| Notched Izod Impact, LW                  | D-256        | ftlbs./in.          | 25        | 25         | 40        | 18.5                 | 20           | 20                    | 18.5   | 20           | 20        |
|                                          |              | J/mm                | 1.33      | 1.33       | 2.13      | 0.98                 | 1.06         | 1.06                  | 0.98   | 1.06         | 1.06      |
| Notched Izod Impact, CW                  | D-256        | ftlbs./in.          | 4         | 4          |           | 5                    | 5            | 5                     | 5      | 5            | 5         |
| 110tonea 120a impaot, OW                 | 2 200        | J/mm                | 0.2       | 0.2        |           | 0.26                 | 0.26         | 0.26                  | 0.26   | 0.26         | 0.26      |

|                                    | ASTM Test               |                                    | Polyester Vinylester |                    | ester Rod & Bar | Polyester Flat Sheet |              |           | Vinylester Flat Sheet |              |           |
|------------------------------------|-------------------------|------------------------------------|----------------------|--------------------|-----------------|----------------------|--------------|-----------|-----------------------|--------------|-----------|
|                                    | Method                  | Units                              | PROForms             | PROForms           | •               | 1/8"                 | 3/16" - 1/4" | 3/8" - 1" | 1/8"                  | 3/16" - 1/4" | 3/8" - 1" |
| PHYSICAL PROPERTIES                |                         |                                    |                      |                    |                 |                      |              |           |                       |              |           |
| Barcol Hardness                    | D-2583                  | _                                  | 45                   | 45                 | 50              | 40                   | 40           | 40        | 40                    | 40           | 40        |
| 24-Hour Water Absorption           | D-570                   | % max., by wt.                     | 0.60                 | 0.60               | 0.25            | 0.60                 | 0.60         | 0.60      | 0.60                  | 0.60         | 0.60      |
| Donoitu                            | D 700                   | lbs./in. <sup>3</sup>              | .062070              | .062070            | .072076         | 0.60-0.68            | 0.60-0.68    | 0.60-0.68 | 0.60-0.68             | 0.60-0.68    | 0.60-0.68 |
| Density D-792                      | D-192                   | 10 <sup>-3</sup> g/mm <sup>3</sup> | 1.72-1.94            | 1.72-1.94          | 1.99-2.10       | 1.66-1.88            | 1.66-1.88    | 1.66-1.88 | 1.66-1.88             | 1.66-1.88    | 1.66-1.88 |
| Coefficient of Thermal             | D-696                   | 10 <sup>-6</sup> in./in./°F        | 7.0                  | 7.0                | 5.0             | 8.0                  | 8.0          | 8.0       | 8.0                   | 8.0          | 8.0       |
| Expansion (Typical), LW            | D-090                   | 10 <sup>-6</sup> mm/mm/°C          | 12.6                 | 12.6               | 5.45            | 14.5                 | 14.5         | 14.5      | 14.5                  | 14.5         | 14.5      |
| The word Conductivity              | C-177                   | BTU/sf/hr/°F/in.                   | 4                    | 4                  | 4               | 4                    | 4            | 4         | 4                     | 4            | 4         |
| Thermal Conductivity               | C-177                   | W-m/m <sup>2</sup> / °C            | 0.58                 | 0.58               | 0.58            | 0.58                 | 0.58         | 0.58      | 0.58                  | 0.58         | 0.58      |
| ELECTRICAL PROPERTIE               | <b>S</b> (based on poly | ester and vinyleste                | r resin systems)     |                    |                 |                      |              |           |                       |              |           |
| Arc Resistance, LW                 | D-495                   | seconds                            | 120                  |                    |                 |                      |              |           |                       |              |           |
| Dielectric Strength, LW            | D-149                   | kv/in.                             | 35                   |                    |                 |                      |              |           |                       |              |           |
| Dielectric Strength, PF            | D-149                   | volts/mil.                         | 200                  |                    |                 |                      |              |           |                       |              |           |
| Dielectric Strength, PF            | D-150                   | @60hz                              | 5                    |                    |                 |                      |              |           |                       |              |           |
| FLAMMABILITY PROPER                | TIES (based on          | fire retardant polye               | ster and fire retai  | dant vinylester re | sin systems)    |                      |              |           |                       |              |           |
| Flammability Classification (1/8") | UL 94                   | V-0                                |                      |                    |                 |                      |              |           |                       |              |           |
| Tunnel Test                        | E-84                    | 25 max.                            |                      |                    |                 |                      |              |           |                       |              |           |
| NBS Smoke Chamber<br>E-662         | E-662                   | 600-700                            |                      |                    |                 |                      |              |           |                       |              |           |
| Flammability                       | D-635                   | Self<br>Extinguishing              |                      |                    |                 |                      |              |           |                       |              |           |

LW=Lengthwise CW=Crosswise PF=Perpendicular to Laminate Face







## **Typical Properties of Threaded Rod and Nuts**

Our threaded rod and nuts are manufactured using premium vinylester resin containing UV inhibitors. The properties shown are the result of the ASTM test method indicated.

|                                                      |                     |                             | Value<br>Diameter – Threads per inch (UNC) |           |                   |           |         |  |  |
|------------------------------------------------------|---------------------|-----------------------------|--------------------------------------------|-----------|-------------------|-----------|---------|--|--|
| Properties                                           | ASTM Test<br>Method | Units                       | 3/8" - 16                                  | 1/2" - 13 | 5/8" - 11         | 3/4" - 10 | 1" - 8  |  |  |
| Ultimate Transverse Shear                            |                     | lb.                         | 4,200                                      | 6,800     | 10,000            | 13,400    | 24,000  |  |  |
| (Double Shear)                                       | B-565               | N                           | 18,683                                     | 30,248    | 44,482            | 59,606    | 106,757 |  |  |
| Longitudinal                                         | D 00E               | psi                         | 50,000                                     | 50,000    | 50,000            | 50,000    | 50,000  |  |  |
| Compressive Strength                                 | D-695               | MPa                         | 345                                        | 345       | 345               | 345       | 345     |  |  |
|                                                      | D 700               | psi                         | 70,000                                     | 70,000    | 70,000            | 70,000    | 70,000  |  |  |
| Flouring Chronoth                                    | D-790               | MPa                         | 483                                        | 483       | 483               | 483       | 483     |  |  |
| Flexural Strength                                    |                     | psi x 10 <sup>6</sup>       | 2.5                                        | 2.5       | 2.5               | 2.5       | 2.5     |  |  |
|                                                      | D-790               | GPa                         | 17.2                                       | 17.2      | 17.2              | 17.2      | 17.2    |  |  |
| Flammability                                         | D-635               |                             |                                            | S         | Gelf-extinguishin | ıg        |         |  |  |
| Fire Retardant                                       | E-84                |                             | Class 1                                    |           |                   |           |         |  |  |
| Water Absorption<br>(24 Hour Immersion)              | D-570               | % max.                      | 0.8                                        | 0.8       | 0.8               | 0.8       | 0.8     |  |  |
| Longitudinal Coefficient                             | D-696               | 10 <sup>-6</sup> in./in./°F | 6                                          | 6         | 6                 | 6         | 6       |  |  |
| of Thermal Expansion                                 |                     | 10 <sup>-6</sup> mm/mm/°C   | 11                                         | 11        | 11                | 11        | 11      |  |  |
| Ultimate Thread Shear<br>(Using Fiberglass Nut)      |                     | lb.                         | 1,200                                      | 2,400     | 3,600             | 4,000     | 8,200   |  |  |
|                                                      | _                   | N                           | 5,338                                      | 10,676    | 16,014            | 17,793    | 36,475  |  |  |
| Ultimate Torque Strength                             |                     | ftlb.                       | 8                                          | 16        | 35                | 50        | 110     |  |  |
| (Fiberglass Nut Lubricated with SAE 10W30 Motor Oil) | _                   | N-m                         | 11                                         | 22        | 47                | 68        | 149     |  |  |
| D. IW. d.                                            | _                   | lb./ft.                     | 0.09                                       | 0.15      | 0.24              | 0.34      | 0.52    |  |  |
| Rod Weight                                           |                     | g/m                         | 40.82                                      | 68.03     | 108.86            | 154.22    | 235.86  |  |  |
| N W d                                                |                     | lb.                         | 0.02                                       | 0.03      | 0.04              | 0.07      | 0.13    |  |  |
| Nut Weight                                           | _                   | grams                       | 9.07                                       | 13.60     | 18.14             | 31.75     | 58.96   |  |  |
| Nut Dimensions                                       |                     | in.                         | 0.75                                       | 0.875     | 1.25              | 1.5       | 1.75    |  |  |
| (Hex Nut Height)                                     | _                   | mm                          | 19.1                                       | 22.2      | 31.8              | 38.1      | 44.5    |  |  |
| Color                                                |                     |                             | Gray                                       |           |                   |           |         |  |  |

### **Fabricating With FRP**

PROForms° structural shapes are designed to provide superior mechanical properties and corrosion resistance. These products, combined with our PROGrid° and PROGrate° grating, are often used to fabricate structures such as stair/handrail assemblies, ladders, walkways and more. Our manufacturing headquarters includes a state-of-the-art fabrication facility, so we can cut, drill and assemble profiles to your specs or ship them ready to assemble in the field.







#### **Fastening**

There are many ways to fasten FRP to FRP or FRP to other materials, including riveted, screwed, and boltand-nut connections. Bolts and threaded holes are also possible (bonding in place is recommended), as well as lag screws when fastening profiles to wood.

#### **Adhesives**

Adhesives can also provide a very strong bond between two FRP shapes or between FRP and other structural materials. For best results, the mating surfaces must be properly prepared, and the recommended type of adhesive must be used. Adhesive should also be applied in a controlled environment, as air temperature and humidity can adversely affect the cure.

#### **FRP Preparation**

Almost all fabrication methods currently used for wood, aluminum and steel are available for the fabrication of our FRP building materials. PROForms products can be sawed, drilled, routed, punched and turned using standard metalworking equipment.


Shearing is only recommended on material 3/16" or thinner. Diamond-coated or carbide saw blades and bits are recommended, as well as properly sharpened tools for faster speeds and less wear on tools.

#### **Cutting Tips**

When performing any cutting operation, use light, evenly applied pressure. Excessive pressure tends to clog the blade with dust particles, and this will shorten the life of the blade. Cutting speed is very important. Cutting too fast will fray the edge of the material and may cause it to turn black.



Visit **bedfordreinforced.com** and download the Fabrication Manual for more details on general fabrication guidelines.







## **EXPLORE OUR FULL LINE OF FRP SOLUTIONS**

Bedford offers a wide variety of structural products made of fiberglass-reinforced polymer, including PROForms® shapes, PROGrid® molded grating and PROGrate® pultruded grating. Our staff of skilled engineering, design and manufacturing professionals is dedicated to helping our customers maximize the benefits of FRP.

#### **PRODUCTS**

- Structural shapes
- Grating
- Decking
- Stairs and handrails
- Ladders and cages
- Fabricated structures

#### **SERVICES**

- Design and drafting
- Engineering
- Fabrication and CNC machining
- Secondary coating and painting
- Assembly and kitting
- In-house testing



When you receive a ready-to-ship date from Bedford, it's GUARANTEED\*. If we miss the promised ship date, we pay significant penalties back to you. We also offer Express Response options with shorter, guaranteed lead times.



Bedford PROForms® products are warranted against manufacturing defects for 25 years\*, so you can specify our FRP building material with confidence.

\*Terms and conditions apply. Download our complete guarantee and warranty at **bedfordreinforced.com** or contact us for details.

Ship date guarantees available in most areas.



#### BEDFORD REINFORCED PLASTICS: ONE CORPORATE DRIVE, SUITE 106, BEDFORD, PA 15522 USA

The photographs and/or drawings in this literature are for illustrative purposes only. While every reasonable effort has been made to ensure the accuracy of this data, we are not responsible for any errors or omissions contained on these pages. Please verify any information in question with a Bedford sales representative. We reserve the right to make changes in specifications without notice and without incurring obligation.

© 2018 Bedford Reinforced Plastics. All rights reserved.





